=

@)

1.2.1.3

L

http://chuck.cs.princeton.edu/
| http://chuck.stanford.edu/

h u ¢ K M a n u a

|

Copyright 2007 (© Ge Wang and Perry Cook

http://chuck.cs.princeton.edu/
http://chuck.stanford.edu/

Authors of ChucK

Originated by:
Ge Wang
Perry R. Cook

Chief Architect and Designer:
Ge Wang

Lead Developers:
Ge Wang — ge@ccrma.stanford.edu | gewang@cs.princeton.edu
Perry R. Cook — prc@cs.princeton.edu
Spencer Salazar — ssalazar@cs.princeton.edu
Rebecca Fiebrink — fiebrink@cs.princeton.edu
Ananya Misra — amisra@cs.princeton.edu
Philip Davidson — philipd@alumni.princeton.edu
Ari Lazier — alazier@cs.princeton.edu

Documentation:
Adam Tindale — adam.tindale@acad.ca
Ge Wang
Rebecca Fiebrink
Philip Davidson
Ananya Misra
Spencer Salazar

Lead Testers:
The ChucK Development/User Community — http://chuck.cs.princeton.edu/community/
Ge Wang
Ajay Kapur — akapur@alumni.princeton.edu
Spencer Salazar
Philip Davidson

The ChucK Manualsl

Thank You

Many people have further contributed to ChucK by suggesting great new ideas and improvements,
reporting problems, or submitting actual code. Here is a list of these people. Help us keep it

complete and exempt of errors.

Andrew Appel
Brian Kernighan
Paul Lansky
Roger Dannenberg
Dan Trueman
Ken Steiglitz

Max Mathews
Chris Chafe
Szymon Rusinkiewicz
Graham Coleman
Scott Smallwood
Mark Daly
Kassen

Kijjaz

Gary Scavone
Brad Garton

Nick Collins

Tom Briggs

Paul Calamia
Mikael Johanssons
Magnus Danielson
Rasmus Kaj

Princeton Graphics Group
Princeton Laptop Orchestra
Stanford Laptop Orchestra

CCRMA community
Smule

ChucK users community!!!

The ChucK Manualsl

ii

ChucK Places

ChucK home page (Princeton):
http://chuck.cs.princeton.edu/

ChucK home page (Stanford):
http://chuck.stanford.edu/

ChucK Documentation + Tutorials:
http://chuck.cs.princeton.edu/doc/

For the most updated tutorial:
http://chuck.cs.princeton.edu/doc/learn/

For the ideas and design behind ChucK, read the papers at:

http://chuck.cs.princeton.edu/doc/publish/

ChucK PhD Thesis:
http://www.cs.princeton.edu/~gewang/thesis.html

ChucK Community:
http://chuck.cs.princeton.edu/community /

ChucK Wiki
http://chuck.cs.princeton.edu/wiki

miniAudicle:
http://audicle.cs.princeton.edu/mini/

Audicle:
http://audicle.cs.princeton.edu/

Princeton Sound Lab:
http://soundlab.cs.princeton.edu/

Stanford University, CCRMA:
http://ccrma.stanford.edu/

The ChucK ManualJl

iii

http://chuck.cs.princeton.edu/
http://chuck.stanford.edu/
http://chuck.cs.princeton.edu/doc/
http://chuck.cs.princeton.edu/doc/learn/
http://chuck.cs.princeton.edu/doc/publish/
http://www.cs.princeton.edu/~gewang/thesis.html
http://chuck.cs.princeton.edu/community/
http://chuck.cs.princeton.edu/wiki
http://audicle.cs.princeton.edu/mini/
http://audicle.cs.princeton.edu/
http://soundlab.cs.princeton.edu/
http://ccrma.stanford.edu/

CONTENTS

Authors of ChucK o i
Thank You e il
ChucK Places e e iii
1 Intro-ChucK-tion 1
2 Installation 3
Binary Installation L L e 3
Source Installation L e 6
3 ChucK Tutorials 8
A Chuck Tutorial e e e 8
Conventions o e e 13
On-the-fly-programming L e 14
Modifying Basic Patches 17
LFOs and Blackhole 19
Working with MIDI 0 o o e 21
Writing To Disk e e e 24
SEEIEO . v o o o e e 26
The ChucK Manualsl iv

=> CONTENTS

Using OSC in ChucK o e 27
4 Overview 31
running ChucK 0 oo 31
COMMENTS .« . . v v v vt ittt e e e e e e e e e e e e e 32
debug print L e e 33
reserved WOTdS L L. Lo e e e 34
5 Types, Values, and Variables 37
primitive types L e e e e e e e e e 37
values (literals) oL 38
variables . . . Lo e e e e 38
reference types oL L L 40
complex tYyPes e e e 40
6 Arrays 42
declaration L L e 42
multi-dimensional arrays L oL e e e 43
lookup e e 44
associative arrays L L Lo e e e e e e e e 46
array assignment . . .o oo oL L oL e e e e e e 47
7 Operators and Operations 50
Cast . . . e e e e e e 53
8 Control Structures 56
if /else . . e e e e e e e e 56
while . . . L e 57
until . ..o e e o7
for . . 58

The ChucK ManualJl v

CONTENTS

break / continue o oL oo

9 Functions

Writing oL oL
calling L

overloading e

10 Concurrency and Shreds

sporking shreds (incode)
the 'me’ keyword
using Machine.add()

inter-shred communication

11 Time and Timing

time and duration oL

operations on time and duration (arithmetic)

the keyword ‘now’” Lo

advancing timeo Lo o Lo

12 Events

what they are o

MIDI events oo
OSC events« v v v i i e e s

creating custom eventso 0oL

13 Objects

introduction
built-in classes

working with objects

The ChucK ManualJl

vi

=> CONTENTS
writing a class L L e e e e e e e 82
members (instance data + functions) o Lo oo 83
class constructors oL L L e e 85
static (data + functions) 85
inheritance L L e e 86
Overloading 0 e e 89
14 The ChucK Compiler 4+ Virtual Machine 90
15 Unit Analyzers 93
declaring L e e 94
CONNECtINg« . . oL e e e e e e e 94
controlling (over time) e 95
representing metadata: the UAnaBlob, 98
representing complex data: the complex and polar types 100
performing analysis in UAna networks L 100
USING €VENtS . . .« . L L e e e e e e e e e 103
built—in unit analyzers L L L 103
creating e e e e e e e 103
16 UAna objects 104
17 On-the-fly Programming Commands 112
18 Standard Libraries API 115
19 Unit Generators 121

The ChucK ManualJl

vii

Getting Started

The ChucK Manualsl viii

CHAPTER

Intro-ChucK-tion

what is it: ChucK is a general-purpose programming language, intended for real-time audio syn-
thesis and graphics/multimedia programming. It introduces a truly concurrent programming model
that embeds timing directly in the program flow (we call this strongly-timed). Other potentially
useful features include the ability to write/change programs on-the-fly.

who it is for: audio/multimedia researchers, developers, composers, and performers

supported platforms:

e MacOS X (CoreAudio)
e Linux (ALSA/OSS/Jack)

¢ Windows/also Cygwin (DirectSound)

Strongly-timed

ChucK’s programming model provides programmers direct, precise, and readable control over time,
durations, rates, and just about anything else involving time. This makes ChucK a potentially fun
and highly flexible tools for describing, designing, and implementing sound synthesis and music-
making at both low and high levels.

The ChucK Manualsl 1

=> Intro-ChucK-tion

On-the-fly Programming

On-the-fly programming is a style of programming in which the programmer /performer/composer
augments and modifies the program while it is running, without stopping or restarting, in order
to assert expressive, programmable control for performance, composition, and experimentation at
run-time. Because of the fundamental powers of programming languages, we believe the technical
and aesthetic aspects of on-the-fly programming are worth exploring.

The ChucK Manualsl 2

CHAPTER I

Installation

We tried to make ChucK as easy as possible to build (if desired), install, and re-use. All sources files
- headers source for compiler, vim, and audio engine - are in the same directory. Platforms differences
are abstracted to the lowest level (in part thanks to Gary Scavone). None of the compiler/vm has
any OS-depedent code.

There are also pre-compiled executables available for OS X and Windows.

The classic ’chuck’ runs as a command line program. There are GUI-based integrated development
and performance environments as well that can be used as standalone chuck virtual machines, or in
conjunction with the command version of 'chuck’. GUI-based environments include the miniAudicle
(http://audicle.cs.princeton.edu/mini). This section deals mainly with the classic, command-line
version of chuck.

Binary Installation

The binary distributions include a directory called bin/ that contains the precompiled binary of
ChucK for your operating system. The binary distribution is a great way to dive into ChucK.

The ChucK Manualsl 3

http://audicle.cs.princeton.edu/mini/

=> Installation

OS X

1. The terminal is located in the Utilities/ folder in the Applications/ folder of your hard drive.
Open terminal (create a shortcut to it in the dock if you want, since we will be using it a lot with
the command-line chuck). In the terminal go to the bin/ directory (replace chuck-x.x.x.x-exe with
the actual directory name):

‘ %>cd chuck-x.x.x.x-exe/bin ‘

2. Install it using the following command.

‘ %>sudo cp chuck /usr/bin/ ‘

(enter password when prompted)

%>sudo chmod 755 /usr/bin/chuck

Now you should be able to run ’chuck’ from any directory.

3. Test to make sure it is was installed properly.

| %>chuck

You should see the following message (which is the correct behavior):

‘ [chuck]: no input files... (try —help) ‘

Windows

1. Place chuck.exe (found in the ’'bin’ folder) into c:\windows\system32\

2. Open a command window found in start->run

The ChucK Manualsl 4

=> Installation

E Microsoft Word :
9) Help and Support
ﬁ FowerDVD p Search

Dell Solution Center

3. Type cmd and press return

Him m

Type the name of a program, folder, document, or
Internet resource, and Windows wil open it for you.

Y

Open: | cmd|

I Ok Cancel Jl Browse... J

4. Type chuck and press return, you should see:

%>chuck
[chuck]: no input files... (try —help)

The ChucK Manualdl 5

=> Installation

Source Installation

To build chuck from the source (Windows users: it’s possible to build ChucK from both Visual
C++ 6.0 and from cygwin - this section describes the cygwin build):

1. Go to the src/ directory (replace chuck-x.x.x.x with the actual directory name):

‘ %>cd chuck-x.x.x.x/src/ ‘

2. If you type 'make’ here, you should get the following message:

%>make

[chuck] : please use one of the following configurations:
make osx, make osx-ub, make win32,

make linux-oss, make linux-alsa, make linux-jack

Now, type the command corresponding to your platform...

for example, for MacOS X (universal binary):

‘ %>make osx-ub

for example, for MacOS X (current):

‘ %>make osx

for example, for Windows (under cygwin):

‘ %>make win32

3. If you would like to install chuck (cp into /usr/bin by default). If you don’t like the destination,
edit the makefile under ‘install’, or skip this step altogether. (we recommend putting it somewhere
in your path, it makes on-the-fly programming easier)

(optional: edit the makefile first)
%>make install

You may need to have administrator privileges in order to install ChucK. If you have admin access
then you can use the sudo command to install.

The ChucK Manualsl 6

=> Installation

‘ %>sudo make install

4. If you haven’t gotten any egregious error messages up to this point, then you should be done!
There should be a ‘chuck’ executable in the current directory. For a quick sanity check, execute
the following (use ‘./chuck’ if chuck is not in your path), and see if you get the same output:

‘ %>chuck [chuck]: no input files...

(if you do get error messages during compilation, or you run into some other problem - please let
us know and we will do our best to provide support)

You are ready to ChucK. If this is your first time programming in ChucK, you may want to look
at the documentation, or take the ChucK Tutorial (http://chuck.cs.princeton.edu/doc/).

ThanK you very much. Go forth and ChucK - email us for support or to make a suggestion or to
call us idiots.

Ge + Perry

The ChucK Manualsl 7

http://chuck.cs.princeton.edu/doc

CHAPTER

ChucK Tutorials

A Chuck Tutorial

Hello ChucK:

This tutorial was written for the command line version of ChucK (currently the most stable and
widely supported). Other ways of running ChucK include using the miniAudicle (download and
documentation at: hitp://audicle.cs.princeton.edu/mini/) and the Audicle (in pre-pre-alpha). The
ChucK code is the same, but the way to run them differs, depending the ChucK system.

The first thing we are going to do is do generate a sine wave and send it to the speaker so we can
hear it. We can do this easily in ChucK by connecting audio processing modules (unit generators)
and having them work together to compute the sound.

We start with a blank ChucK program and add the following line of code:

// connect sine oscillator to D/A convertor (sound card)
Sin0Osc s => dac;

NOTE: by default, a ChucK program starts executing from the first instruction in the top-level
(global) scope.

The above does several things:

The ChucK Manualsl 8

http://audicle.cs.princeton.edu/mini/

=> ChucK Tutorials

1. it creates a new unit generator of type ‘SinOsc’ (sine oscillator), and stores its reference in
variable ‘s’.

2. ‘dac’ (D/A convertor) is a special unit generator (created by the system) which is our ab-
straction for the underlying audio interface.

3. we are using the ChucK operator (=>) to ChucK ‘s’ to ‘dac’. In ChucK, when one unit
generator is ChucKed to another, we connect them. We can think of this line as setting up a
data flow from ‘s’, a signal generator, to ‘dac’, the sound card/speaker. Collectively, we will
call this a ‘patch’.

The above is a valid ChucK program, but all it does so far is make the connection — if we ran this
program, it would exit immediately. In order for this to do what we want, we need to take care
of one more very important thing: time. Unlike many other languages, we don’t have to explicitly
say “play” to hear the result. In ChucK, we simply have to “allow time to pass” for data to be
computed. As we will see, time and audio data are both inextricably related in ChucK (as in
reality), and separated in the way they are manipulated. But for now, let’s generate our sine wave
and hear it by adding one more line:

// connect sine oscillator to D/A convertor (sound card)
Sin0Osc s => dac;

// allow 2 seconds to pass
2::second => now;

Let’s now run this (assuming you saved the file as ‘foo.ck’):

‘ %>chuck foo.ck ‘

This would cause the sound to play for 2 seconds (the :: operator simply multiplies the arguments),
during which time audio data is processed (and heard), after which the program exits (since it has
reached the end). For now, we can just take the second line of code to mean “let time pass for 2
seconds (and let audio compute during that time)”. If you want to play it indefinitely, we could
write a loop:

// connect sine oscillator to D/A convertor (sound card)
Sin0Osc s => dac;

// loop in time
while(true) {
2::second => now;

The ChucK Manualsl 9

=> ChucK Tutorials

In ChucK, this is called a ‘time-loop’ (in fact this particular one is an ‘infinite time loop’). This
program executes (and generate/process audio) indefinitely. Try running this program.

IMPORTANT: perhaps more important than how to run ChucK is how to stop ChucK. To stop
a ongoing ChucK program from the command line, hit (ctrl c).

So far, since all we are doing is advancing time; it doesn’t really matter (for now) what value we
advance time by - (we used 2::second here, but we could have used any number of ‘ms’, ‘second’,
‘minute’, ‘hour’, ‘day’, and even ‘week’), and the result would be the same. It is good to keep in
mind from this example that almost everything in ChucK happens naturally from the timing.

Now, let’s try changing the frequency randomly every 100ms:

// make our patch
Sin0Osc s => dac;

// time-loop, in which the Osc’s frequency is changed every 100 ms
while(true) {

100::ms => now;

Std.rand2f(30.0, 1000.0) => s.freq;

This should sound like computer mainframes in old sci-fi movies. Two more things to note here.
(1) We are advancing time inside the loop by 100::ms durations. (2) A random value between 30.0
and 1000.0 is generated and ’assigned’ to the oscillator’s frequency, every 100::ms.

Go ahead and run this (again replace foo.ck with your filename):

‘ %>chuck foo.ck ‘

Play with the parameters in the program. Change 100::ms to something else (like 50::ms or 500::ms,
or 1:ms, or l::samp(every sample)), or change 1000.0 to 5000.0.

Run and listen:

‘ %>chuck foo.ck

Once things work, hold on to this file - we will use it again soon.
Concurrency in ChucK:

Now let’s write another (slightly longer) program:

The ChucK Manualsl 10

=> ChucK Tutorials

// impulse to filter to dac
Impulse i => BiQuad f => dac;
// set the filter’s pole radius
.99 => f.prad;

// set equal gain zero’s

1 => f.eqzs;

// initialize float variable
0.0 => float v;

// infinite time-loop
while(true)
{
// set the current sample/impulse
1.0 => i.next;
// sweep the filter resonant frequency
Std.fabs(Math.sin(v)) * 4000.0 => f.pfreq;
// increment v
v+ .1 =>v;
// advance time
100::ms => now;

Name this moe.ck, and run it:

‘ %>chuck moe.ck

Now, make two copies of moe.ck - larry.ck and curly.ck. Make the following modifications:

1. change larry.ck to advance time by 99::ms (instead of 100::ms).
2. change curly.ck to advance time by 101::ms (instead of 100::ms).

3. optionally, change the 4000.0 to something else (like 400.0 for curly).

Run all three in parallel:

‘ %>chuck moe.ck larry.ck curly.ck ‘

What you hear (if all goes well) should be ’'phasing’ between moe, larry, and curly, with curly
emitting the lower-frequency pulses.

ChucK supports sample-synchronous concurrency via the ChucK timing mechanism. Given any
number of source files that uses the timing mechanism above, the ChucK VM can use the timing

The ChucK Manualsl 11

=> ChucK Tutorials

information to automatically synchronize all of them. Furthermore, the concurrency is ’sample-
synchronous’, meaning that inter-process audio timing is guaranteed to be precise to the sample.
The audio samples generated by our three stooges in this examples are completely synchronized.
Note that each process do not need to know about each other - it only has to deal with time locally.
The VM will make sure things happen correctly and globally.

The ChucK Manualsl 12

=> ChucK Tutorials

Conventions

ChucK is supported under many different operating systems. While ChucK code is intended to be
truly ” platform-independent”, each different OS has their own “features” that make the experience
of working with ChucK slightly different. This chapter will outline some of these differences.

ChucK is used as a terminal application in this tutorial, so you will need to know how to access
and navigate in the terminal. Here are some hints about getting started with the terminal on your
operating system.

OS X

The terminal is located in the Utilities/ folder in the Applications/ folder of your hard drive. Double
click on Terminal. You can click and hold on the icon in the Dock and select the “Keep in Dock”
option. Now the Terminal application will be conveniently located in the Dock.

http://www.macdevcenter.com/pub/ct/51

http://www.atomiclearning.com/macosxterminalx.shtml

Windows

The terminal is accessed by clicking on the Start Menu and then clicking on run. In the window
that opens type cmd.

http://www.c3scripts.com/tutorials/msdos/
http://www.ss64.com/nt/
Linux

No hints needed here.

The ChucK Manualsl 13

http://www.macdevcenter.com/pub/ct/51
http://www.atomiclearning.com/macosxterminalx.shtml
http://www.c3scripts.com/tutorials/msdos/
http://www.ss64.com/nt/

=> ChucK Tutorials

On-the-fly-programming
by Adam Tindale

Navigate to the examples folder in the ChucK distribution then run the following command:

‘ %>chuck moe.ck

In this case, ChucK will run whatever is in moe.ck. You can replace moe.ck with the name of
another ChucK file. If this script is a just a loop that never ends then we need to stop ChucK
eventually. Simply press CTRL-C (hold control and press c¢). This is the "kill process” hotkey in
the terminal.

Some first things to try is to test the concurrency (running multiple ChucK files in parallel) are
moe, larry, and curly. First, run them each individually (run chuck on moe.ck, larry.ck, or
curly.ck as shown above). Then, run them all in parallel, like this:

‘ %>chuck moe.ck larry.ck curly.ck

They are written to go in and out of phase with each other. Again, if any of these scripts will go
on forever then you have to use CTRL-C to halt ChucK. Give it a try.

Also try the improved versions of our little friends: larry++-.ck curly++.ck moe++.ck

Two Window ChucK

Now lets roll up our sleeves a little bit and see some real ChucK power! We are going to run two
window ChucK, and on-the-fly! This section will walk you through a ChucK session.

The ChucK Manualsl 14

=> ChucK Tutorials

Here is what you do: open another terminal window just like this one. In this new window type:

%>chuck --loop

This will start ChucK running. ChucK is now waiting for something to do. Go back to your original
window where you are in your ChucK home. Be careful. If you type chuck testl.ck you will start
a second ChucK running testl.ck. What we want to do is add a script to the ChucK that we set
running in our second window. We will use the + operator to add a script to our ChucK and the
- operator to remove a script.

%>chuck + testl.ck
%>chuck - 1
%>chuck test.ck
%>chuck test.ck
%>chuck test.ck

What happened? That is the power of on-the-fly programming. We added testl.ck. It was added
as the first shred in our ChucK. Since we knew it was shred 1 we removed it by typing chuck - 1.
Great. Next we added three copies of the same script! Isn’t that cool? You can also do this chuck
+ testl.ck testl.ck testl.ck How do you keep track of shreds?

You can ask ChucK how he is doing by typing chuck --status The shortcut is chuck ChucK will
answer in the other window where we left him running. He will tell you what shreds there are and
what their id numbers are. He will also tell you how long he has been running.

When you have had enough of ChucK you can go to the other window and use your fancy CTRL-C
trick or you can type chuck --kill in your original window.

The ChucK Manualsl 15

=> ChucK Tutorials

‘ %>chuck - -kill

One Window ChucK

So you think you are pretty good? One window ChucK is only for the hardest of hardcore." You
have been warned.

The concept is pretty similar to two window ChucK: first, you start a ChucK going, then you
manage the adding and removal of scripts to it. How do you start a ChucK and get the command
prompt to return, you ask? In your shell you can add an ampersand (&) after the command and
that will tell the shell to run the command as a background process and give you the prompt back.

%>chuck --loop & ‘

The rest is as it should be. You will have to be careful when writing your patches to not put too
many print statements. When you print you will temporarily lose control of the prompt as the
shell prints. This can be bad when are you are printing MIDI input. The same applies when you
use the --status command to ChucK. It can also be fun to fight for your command line. Who will
win?

! As one adventurous Windows user has noted, due to its reliance on launching background processes, it is in fact
only for the hardest of hardcore Mac and Linux users, or those valiant Windows traitors employing Cygwin or similar
Unix-like interfaces.

The ChucK Manualsl 16

=> ChucK Tutorials

Modifying Basic Patches

by Adam Tindale

We have a basic patch running in ChucK but it still doesn’t sound very good. In this chapter we will
cover some simple ways to rectify that problem. ChucK allows one to quickly make modifications
to patches that can drastically change the sound.

First what we can do is change the type of our oscillator. There are many different oscillators
available to use: SinOsc (sine wave), SawOsc (sawtooth), SqrOsc (square wave) and PulseOsc
(pulse wave). We can simply change the type of oscillator just like below.

SawOsc s => dac;

Try changing the oscillator to all of the different types and a get a feel for how they sound. When
changing the different Ugens always be sure to check the rest of your patches so that the parameter
calls are valid. If you were to use the .width method of PulseOsc and others on a SinOsc ChucK
will complain. You can comment out lines that are temporarily broken by using double slashes

(//)-

Now let’s add some effects to our patch. ChucK has many different standard effects that can be
added to Ugen chains. The simplest effect we can add is an amplifier. In ChucK, this object is
Gain.

SawOsc s => Gain g => dac;

Now we can change the parameters of our effect. Gain has a parameter .gain that can be used to
change the gain of signals passing through the object. Let’s go about changing the gain.

.5 => g.gain;

This is redundant. All Ugens have the ability to change their gain in a similar manner. (See the
UGEN section in Reference for more information about UGEN parameters.)

.5 => s.gain;

However, this is useful when we have multiple Ugens connect to one place. If we were to connect
2 oscillators to the dac then we will get distortion. By default, these oscillators oscillate between
-1 and 1. When they are connected to the same input they are added, so now they go between -2
and 2. This will clip our output. What to do? Gain to the rescue!

The ChucK Manualsl 17

=> ChucK Tutorials

SinOsc s1 => Gain g => dac;
Sin0sc 82 => g;
.5 => g.gain;

Now our oscillators are scaled between -1 and 1 and everything is right in the world.

More effects were promised, now you will see some in action. Again, one of the wonders of ChucK
is how easy it is to change Ugens. We can take the above patch and change ‘Gain’ for ‘PRCRev’.

SinOsc s1 => PRCRev g => dac;
SinOsc s2 => g;
.5 => g.gain;

The Gain Ugen has been replaced by a reverb and the output is scaled by using the ‘.gain’ parameter
that all Ugens posess. Now we can add a few spices to the recipe. ‘PRCRev’ has a ‘.mix’ parameter
that can be changed between 0. and 1. If we wanted to have this parameter set to the same value
as what we are ChucKing to g.gain we can chain it along. After assignment a Ugen will return the
value that was ChucKed to it. We can use this method to propogate paramters to our oscillators.

.5 => g.gain => g.mix;
500 => sl.freq => s2.freq;

Another technique for setting parameters is to read a parameter, then modify it and then ChucK
it back to itself. Accessing parameters requires the addition of brackets () after the name of the
parameter. Here is an example of doubling the frequency of an oscillator.

sl.freq() * 2 => sl.freq;

Let’s change the type of oscillators for some more fun. We can simply replace ‘SinOsc’ with any
other type of oscillator. Check the Ugen section in the reference for ideas. Try changing the
frequency of the oscillators and the mix parameter of the reverb for each type of oscillator you try.
Endless hours of fun!

The ChucK Manualsl 18

=> ChucK Tutorials

LFOs and Blackhole

by Adam Tindale

A common technique to add variation to synthesis is modulation. Modulation is the process of
changing someting, usually the parameter of a signal like frequency. A Low Frequency Oscillator
(LFO) is typically used for this task because the variations are fast enough to be interesting, yet
slow enough to be perceptable. When a signal is modulated quickly (ie. over 20Hz or so) it tends
to alter the timbre of the signal rather than add variation.

Ok, let’s use this idea. What we need to do is set up two oscillators and have one modulate a
paremeter of another. ChucK does not support the connection of Ugen signal outputs to parameter
inputs. This piece of code will not work:

Sin0Osc s => dac;
SinOsc 1lfo => s.freq;

Foiled. What we need to do is poll our lfo at some rate that we decide on, for now we will update
the frequency of s every 20 milliseconds. Remember that a SinOsc oscillates between -1 and 1, so if
we just put that directly to the frequency of s we wouldn’t be able to hear it (unless you are using
ChucK in a tricked out civic...). What we are going to do is multiply the output of the lfo by 10
and add it to the frequency 440. The frequency will now oscillate between 430 and 450.

Sin0Osc s => dac;
Sin0Osc 1fo;

// set the frequency of the lfo
5 => 1fo.freq;

while (20::ms => now){
(1fo.last() * 10) + 440 => s.freq;
}

ChucK is a smart little devil. This didn’t work and now we will look into the reason. Why? Ugens
are connected in a network and usually passed to the dac. When a patch is compiled ChucK looks
at what is connected to the dac and as each sample is computed ChucK looks through the network
of Ugens and grabs the next sample. In this case, we don’t want our Ugen connected to the dac,
yet we want ChucK to grab samples from it. Enter blackhole: the sample sucker. If we connect
our Ifo to blackhole everything will work out just fine.

Sin0Osc 1lfo => blackhole;

The ChucK Manualsl 19

=> ChucK Tutorials

Play around with this patch in its current form and find interesting values for the poll rate, Ifo
frequency and the Ifo amount. Try changing the Ugens around for more interesting sounds as well.

The ChucK Manualsl 20

=> ChucK Tutorials

Working with MIDI

by Adam Tindale

Adding a MIDI controller is a great way to add variety to your ChucK patches. Conversely, ChucK
offers a simple and powerful way to utilize a MIDI controller for making music.

The first thing to do when working with MIDI is to make sure that ChucK sees all of your devices.
You can do this by using the --probe start flag. Like this:

%>chuck --probe

ChucK will display a list of the connected audio and MIDI devices and their reference ID. We will
assume that your controller is found to have and ID of 0. First, we must open a connection between
ChucK and the port. We can accomplish this by creating a Midiln object and then connecting it
to a port.

//create object
MidiIn min;

//connect to port O
min.open(0);

If you want to send MIDI out of ChucK you use the MidiOut object and then open a port.

//create object
MidiOut mout;

//connect to port 0
mout.open(0) ;

When opening ports it is suggested that you check whether the .open function returns properly. In
some situations it doesn’t make any sense for the shred to live on if there is no MIDI data available
to be sent along. You can check the return value of the .open function and then exit the shred
using the me keyword with the exit() function.

MidiIn min;
min.open(0) => int AmIOpen;

if (!'AmIOpen) { me.exit(); }

The ChucK Manualsl 21

=> ChucK Tutorials

We can do this in fewer lines of code. We can put the min.open(0) in the condition of the if
statement. This way min.open will return true or false (which is represented as ints with a value
of 1 or 0). The ! will give the opposite return value of min.open. Now the statement will mean if
min.open doesn’t return true then exit. Yeah?

if(!'min.open(0)) { me.exit(); }

Getting MIDI

In order to receive any of the juicy data you are piping into ChucK we need to ceate a MidiMsg
object. This object is used to hold data that can be input into ChucK or output to a MIDI port.
Unless you are high skilled at managing the state of these messages (or you enjoy the headache you
get from debugging) it is recommended that you create a minimum of one MidiMsg for each port
you are using.

What we need to do is get the data from the Midiln object into a message that we can use inside
of ChucK. The MidiMsg object is just a container with three slots: datal, data2 and data3. We
fill these slots up by putting our message in the .recv(MidiMsg) function of a Midiln object.
Midiln keeps its messages in a queue so that you can poll it for messages and it will keep giving
messages until it is empty. The .recv(MidiMsg) function returns true and false so we can put it
in a while loop and it will continue to run through the loop until there are no more messages left.

// check for messages every 10 milliseconds
while(10::ms => now){
//
while(min.recv(msg)){
<<<msg.datal,msg.data2,msg.data3,"MIDI Message'">>>;
}

The Event system makes life a little easier and also makes sure that MIDI input is dealt with as
soon as ChucK receives it. All that has to be done is to ChucK the Midiln object to now and it
will wait until a message is received to go further in the program.

while(true){
// Use the MIDI Event from Midiln
min => now;
while(min.recv(msg)){
<<<msg.datal,msg.data2,msg.data3,"MIDI Message'">>>;

}

The ChucK Manualsl 22

=> ChucK Tutorials

Midi Output

If you have a synthesizer that you want to trigger from ChucK you can send MIDI messages to it
simply. All you have to do is have a MidiMsg that will serve as the container for your data and
then you will hand it to MidiOut using the .send(MidiMsg) function.

MidiOut mout;

MidiMsg msg;

// check if port is open

if (!mout.open(0)) me.exit();

// £ill the message with data

144 => msg.datal;

52 => msg.data2;

100 => msg.data3;

// bugs after this point can be sent
// to the manufacturer of your synth
mout.send(msg);

The ChucK Manualsl 23

=> ChucK Tutorials

Writing To Disk
by Adam Tindale and Ge Wang

Here is a brief tutorial on writing to disk...
— 1. recording your ChucK session to file is easy!

example: you want to record the following:

‘ %>chuck foo.ck bar.ck

all you’s got to do is ChucK a shred that writes to file:

‘ %>chuck foo.ck bar.ck rec.ck ‘

no changes to existing files are necessary. an example rec.ck can be found in examples/basic/, this
guy/gal writes to “foo.wav”. edit the file to change. if you don’t want to worry about overwriting
the same file everytime, you can:

‘ %>chuck foo.ck bar.ck rec-auto.ck ‘

rec-auto.ck will generate a file name using the current time. You can change the prefix of the
filename by modifying

"data/session" => w.autoPrefix;

w is the WvOut in the patch.
Oh yeah, you can of course chuck the rec.ck on-the-fly...

from terminal 1

‘ %>chuck --loop ‘

from terminal 2

‘ %>chuck + rec.ck ‘

— 2. silent mode

you can write directly to disk without having real-time audio by using - -silent or -s

The ChucK Manualsl 24

=> ChucK Tutorials

‘ %>chuck foo.ck bar.ck rec2.ck -s

this will not synchronize to the audio card, and will generate samples as fast as it can.
— 3. start and stop

you can start and stop the writing to file by:

1 => w.record; // start

0 => w.record; // stop
as with all thing ChucKian, this can be done sample-synchronously.
— 4. another halting problem

what if I have infinite time loop, and want to terminate the VM, will my file be written out
correctly? the answer:

Ctrl-C works just fine.

ChucK STK module keeps track of open file handles and closes them even upon abnormal termi-
nation, like Ctrl-C. Actually for many, Ctrl-C is the natural way to end your ChucK session. At
any rate, this is quite ghetto, but it works. As for seg-faults and other catastrophic events, like
computer catching on fire from ChucK exploding, the file probably is toast.

hmmmm, toast...
— 5. the silent sample sucker strikes again

as in rec.ck, one patch to write to file is:
dac => Gain g => WvOut w => blackhole;

the blackhole drives the WvOut, which in turns sucks samples from Gain and then the dac. The
WvOut can also be placed before the dac:

Noise n => WvOut w => dac;

The WvOut writes to file, and also pass through the incoming samples.

The ChucK Manualsl 25

=> ChucK Tutorials

Stereo

by Adam Tindale

At long last, ChucK is stereo! Accessing the stereo capabilities of ChucK is relatively simple. dac
now has three access points.

UGen u;
// standard mono connection
u => dac;

// simple enough!
u => dac.left;
u => dac.right;

adc functionality mirrors dac.

// switcheroo
adc.right => dac.left;
adc.left => dac.right;

If you have your great UGen network going and you want to throw it somewhere in the stereo field
you can use Pan2. You can use the .pan function to move your sound between left (-1) and right

(1)

// this is a stereo connection to the dac
SinOsc s => Pan2 p => dac;
1 => p.pan;
while(1::second => now){
// this will flip the pan from left to right
p-pan() * -1. => p.pan;

You can also mix down your stereo signal to a mono signal using the Mix2 object.

adc => Mix2 m => dac.left;

If you remove the Mix2 in the chain and replace it with a Gain object it will act the same way.
When you connect a stereo object to a mono object it will sum the inputs. You will get the same
effect as if you connect two mono signals to the input of another mono signal.

The ChucK Manualsl 26

=> ChucK Tutorials

Using OSC in ChucK

by Rebecca Fiebrink

To send OSC:

Host
Decide on a host to send the messages to. E.g., ”splash.local” if sending to computer named
”Splash,” or ”localhost” to send to the same machine that is sending.

Port
Decide on a port to which the messages will be sent. This is an integer, like 1234.

Message ”address”
For each type of message you're sending, decide on a way to identify this type of message, formatted
like a web URL e.g., ”conductor/downbeat /beatl” or ”Rebecca/messagel”

Message contents
Decide on whether the message will contain data, which can be 0 or more ints, floats, strings, or
any combination of them.

For each sender:

//Create an OscSend object:

OscSend xmit;

//Set the host and port of this object:
xmit.setHost("localhost", 1234);

For every message, start the message by supplying the address and format of contents, where ”{”
stands for float, ”i” stands for int, and ”s” stands for string:

//To send a message with no contents:
xmit.startMsg("conductor/downbeat") ;

//To send a message with one integer:
xmit.startMsg("conductor/downbeat, i");

//To send a message with a float, an int, and another float:
xmit.startMsg("conductor/downbeat, f, i, f");

For every piece of information in the contents of each message, add this information to the message:

//to add an int:

The ChucK Manualsl 27

=> ChucK Tutorials

xmit.addInt (10);

//to add a float:
xmit.addFloat(10.);
//to add a string:
xmit.addString("abc");

Once all parts of the message have been added, the message will automatically be sent.
To receive OSC:

Port:

Decide what port to listen on. This must be the same as the port the sender is using. Message
address and format of contents: This must also be the same as what the sender is using; i.e., the
same as in the sender’s startMsg function.

Code: for each receiver

//Create an OscRecv object:

OscRecv orec;

//Tell the OscRecv object the port:

1234 => orec.port;

//Tell the OscRecv object to start listening for 0SC messages on that port:
orec.listen();

For each type of message, create an event that will be used to wait on that type of message, using
the same argument as the sender’s startMsg function: e.g.,

orec.event ("conductor/downbeat, i") @=> OscEvent myDownbeat;

To wait on an OSC message that matches the message type used for a particular event e, do
e => now;

(just like waiting for regular Events in chuck)
To process the message: Grab the message out of the queue (mandatory!)

e.nextMsg(); For every piece of information in the message, get the data out. You must call these
functions in order, according to your formatting string used above.

e.getInt() => int i;
e.getFloat() => float f;
e.getString() => string s;

The ChucK Manualsl 28

=> ChucK Tutorials

If you expect you may receive more than one message for an event at once, you should process
every message waiting in the cue:

while (e.nextMsg() != 0)
{

//process message here (no need to call nextMsg again

¥

The ChucK Manualsl 29

Reference

The ChucK Manualsl

30

CHAPTER I

Overview

ChucK is a strongly-typed, strongly-timed, concurrent audio and multimedia programming lan-
guage. It is compiled into virtual instructions, which is immediately run in the ChucK Virtual
Machine. This guide documents the features of the Language, Compiler, and Virtual Machine for
a ChucK programmer.

running ChucK

Some quick notes:

e you can install ChucK (see build instructions) or run it from a local directory.

e ChucK is a command line application called chuck. (also see the Audicle)

e use command line prompt/terminal to run ChucK: (e.g. Terminal or xterm on OS X, cmd or
cygwin on Windows, on Linux, you surely have your preferred terminal.)

e this is a quick overview, see VM options for a more complete guide to command line options.

To run ChucK with a program/patch called foo.ck simply run chuck and then the name of the file:

‘ %>chuck foo.ck ‘

To run ChucK with multiple patches concurrently (or the same one multiple times):

The ChucK Manualsl 31

=> Overview

‘ %>chuck foo.ck bar.ck bar.ck boo.ck ‘

There are several flags you can specify to control how ChucK operates, or to find out about the
system. For example,the following probes the audio system and prints out all available audio
devices and MIDI devices. You may then refer to them (by number usually) from the command
line or from your program. (again, see VM Options for a complete list)

‘ %>chuck --probe ‘

ChucK can be run in a different terminal as a host/listener that patches may be sent to. The server
should invoke the —loop flag to specify that the virtual machine should not halt automatically (when
the current programs exit).

‘ %>chuck --loop ‘

(See the guide to On-the-fly Programming for more information)

If a ChucK listener is running, we can (from a second terminal) send a program/patch to to the
listener by using the + command line option:

‘ %>chuck + foo.ck ‘

Similarly, you can use - and = to remove/replace a patch in the listener, and use to find out the
status. Again, see On-the-fly Programming for more information.

To run most of the code or examples in this language specification, you only need to use the basic
chuck program.

comments

Comments are sections of code that are ignored by a compiler. These help other programmers (and
yourself) interpret and document your code. Double slashes indicate to the compiler to skip the
rest of the line.

// this is a comment
int foo; // another comment

Block comments are used to write comments that last more than one line, or less than an entire
line. A slash followed by an asterisk starts a block comment. The block comment continues until
the next asterisk followed by a slash.

The ChucK Manualsl 32

=> Overview

/* this
is a
block
comment */
int /* another block comment */ foo;

Comments can also be used to temporarily disable sections of your program, without deleting it
entirely. ChucK code that is commented-out will be ignored by the compiler, but can easily be
brought back if you change your mind later. In the following example, the PRCRev UGen will be
ignored, but we could easily re-insert it by deleting the block comment delimiters.

SinOsc s => /* PRCRev r => */ dac;

debug print

ChucK currently lacks a comprehensive system for writing to files or printing to the console. In its
place we have provided a debug print syntax:

// prints out value of expression
<<< expression >>>;

This will print the values and types of any expressions placed within them. This debug print
construction may be placed around any non-declaration expression (non l-value) and will not
affect the execution of the code. Expressions which represent an object will print the value of that
object’s reference address:

// assign 5 to a newly declared variable
5 => int i;

// prints "5 : (int)"

<>>;

// prints "hello! : (string)"
<<<"hello!">>>; //prints "hello! : (string)"

// prints "3.5 : (float)"
<<<1.0 + 2.5 >>>=> float x;

For more formatted data output, a comma-separated list of expressions will print only their respec-
tive values (with one space between):

The ChucK Manualsl 33

=> Overview

// prints "the value of x is 3.5" (x from above)
<<<"the value of x is" , x >>>;

// prints "4 + 5 is 9"
<<<"4 + 5 is", 4 + 5>>>;

// prints "here are 3 random numbers 7 7 7"
<<<"here are 3 random numbers",
Std.rand2(0,9),
Std.rand2(0,9),
Std.rand2(0,9) >>>;

reserved words
(primitive types)

int

float

time

dur

void

same (unimplemented)

(control structures)

if

else

while

until

for

repeat

break

continue

return

switch (unimplemented)

(class keywords)

e class
e cxtends

The ChucK Manualsl 34

=> Overview
e public
e static
e pure
e this
e super (unimplemented)
e interface (unimplemented)
e implements (unimplemented)
e protected (unimplemented)
e private (unimplemented)

(other chuck keywords)

function
fun
spork
const
new

(special values)

now
true
false
maybe
null
NULL

me
pi

(special : default durations)

samp
ms
second
minute
hour
day
week

(special : global ugens)

dac

The ChucK Manualsl

35

Overview

e adc

]

<

o

% —

Q z

< o

=)

=z

° 3
oy
o
~—

36

The ChucK Manualsl

CHAPTER

Types, Values, and Variables

ChucK is a strongly-typed language, meaning that types are resolved at compile-time. However,
it is not quite statically-typed, because the compiler/type system is a part of the ChucK virtual
machine, and is a runtime component. This type system helps to impose precision and clarity in
the code, and naturally lends to organization of complex programs. At the same time, it is also
dynamic in that changes to the type system can take place (in a well-defined manner) at runtime.
This dynamic aspect forms the basis for on-the-fly programming.

This section deals with types, values, and the declaration and usage of variables. As in other
strongly-typed programming languages, we can think of a type as associated behaviors of data.
(For example, an ’int’ is a type that means integer, and adding two integer is defined to produce a
third integer representing the sum.) Classes and objects allow us to extend the type system with
our own custom types, but we won’t cover them in this section. We will focus mainly on primitive
types here, and leave the discussion of more complex types for classes and objects.

primitive types

The primitive, or intrinsic types are those which are simple datatypes (they have no additional
data attributes). Objects are not primitive types. Primitive types are passed by value. Primitive
types cannot be extended. The primitive types in ChucK are:

e int : integer (signed)

The ChucK Manualsl 37

=> Types, Values, and Variables

float : floating point number (in ChucK, a float is by default double-precision)
time : ChucKian time

dur : ChucKian duration

void : (no type)

For a summary of operations on these types, go to operations and operators.

All other types are derived from ’object’,; either as part of the ChucK standard library, or as a new
class that you create. For specification, go to classes and objects.

values (literals)

Literal values are specified explicitly in code and are assigned a type by the compiler. The following
are some examples of literal values:

int:

|42
int (hexidecimal):
| 0xaf30
float:
| 1.323
dur:
5.5::second

In the above code, second is an existing duration variable. For more on durations, see the manip-
ulating time section.

variables

Variables are locations in memory that hold data. Variables have to be declared in ChucK before
they are used. For example, to declare a variable of type int called foo:

The ChucK Manualsl 38

=> Types, Values, and Variables

// declare an ’int’ called ’foo’
int foo;

We can assign a value to an existing variable by using the ChucK operator (=>). This is one of
the most commonly used operators in ChuckK, it’s the way to do work and take action! We will

discuss this family of operators in operators and operations.

// assign value of 2 to ’foo’
2 => foo;

It is possible to combine the two statements into one:

// assign 2 to a new variable ’foo’ of type ’int’
2 => int foo;

To use a variable, just refer to it by name:

// debug-print the value of foo
<K< foo >>>;

To update the value of foo, for example:

// multiply ’foo’ by 10, assign back to ’foo’
foo * 10 => foo;

You can also do the above using a *=>(mult-chuck):

// multiply ’foo’ by 10, and then assign to ’foo’
10 *=> foo;

Here is an example of a duration:

// assign value of ’5 seconds’ to new variable bar
5::second => dur bar;

Once you have bar, you can inductively use it to con