Difference between revisions of "SuperCollider Quick Reference"
(→Envelopes) |
(→Envelopes) |
||
Line 306: | Line 306: | ||
</pre> | </pre> | ||
− | How to "read" the two arrays above: | + | How to "read" the two arrays above: ''Go from 0 to 1 in two seconds; then go from 1 to 0.3 in 3 seconds; then go from 0.3 to 0.8 in 1 second; finally go from 0.8 to 0 in 4 seconds.'' |
− | + | If you choose 'exponential', you can't use zero in the first array, but something like 0.001 will do: | |
− | + | ||
− | If you choose 'exponential', you can't use zero, but something like 0.001 will do: | + | |
<pre> | <pre> |
Revision as of 19:43, 12 June 2011
SuperCollider Quick Reference
This page collects short and simple code examples of useful stuff. These are just quick "reminders" of how to do common things. Good page for beginners.
Contents
- 1 Quick system test
- 2 Play a sound file, vary speed, reverse
- 3 Play a MIDI file
- 4 poll and scope
- 5 Random numbers
- 6 Mouse input
- 7 Scale and Offset (mul, add)
- 8 Looping
- 9 If...Else
- 10 Arrays
- 11 Order of operations
- 12 Sample and Hold
- 13 Envelopes
- 14 Amplitude Modulation
- 15 Frequency Modulation
- 16 Additive Synthesis
- 17 Subtractive Synthesis
Quick system test
Start things up and play/see a sine wave:
Server.default = s = Server.local.boot; // start local server g = SwingOSC.default.boot; // on Linux (gedit, emacs) {SinOsc.ar(freq: 400, mul: 0.5)}.scope // you should hear a sine wave and see the waveform
Play a sound file, vary speed, reverse
create a buffer
~pizza = Buffer.read(s, "path/to/sound/file.wav");
simple play
{PlayBuf.ar(1, ~pizza)}.play; // number of channels and buffer
get sound file info
[~pizza.bufnum, ~pizza.numChannels, ~pizza.path, ~pizza.numFrames];
varying playback speed
{PlayBuf.ar(1, ~pizza, 2, loop: 1)}.play; // play 2x faster {PlayBuf.ar(1, ~pizza, 0.5, loop: 1)}.play; // play at half the speed {PlayBuf.ar(1, ~pizza, Line.kr(0.5, 2, 10), loop: 1)}.play; // playback speed goes from 0.5 to 2 in 10 seconds
changing direction (reverse)
{PlayBuf.ar(1, ~pizza, -1, loop: 1)}.play; // reverse sound {PlayBuf.ar(1, ~pizza, -0.5, loop: 1)}.play; // play at half the speed AND reversed
Play a MIDI file
Do this and that.
poll and scope
Check what's going on with your UGens:
{LFNoise0.kr(5).round(0.01).poll(label: "watchThis")}.scope // by default, poll is triggered 10 times per second, but you can change it: {LFNoise0.kr(5).round(0.01).poll(trig: 1, label: "watchThis")}.scope // triggers poll once every second
From SC's reference:
WARNING: Printing values from the Server in intensive for the CPU. Poll should be used for debugging purposes.
Random numbers
rrand
rrand(0, 5) // generates a random number between 0 and 5 (inclusive)
rand
rand(10) // generates a random integer number between 0 and 10 (10 not included) rand(10.0) // generates a random decimal number between 0.0 and 10.0 (10.0 not included) 10.0.rand // same as above 10.0.rand.round(0.01) // same as above with rounding exprand(1, 10.0) // generates a random decimal number between 0.0 and 10.0, mostly lower values
Note the difference between these two:
dup(rand(100), 5) // picks a number, duplicates it dup({rand(100)}, 5) // duplicates the function of picking a number
LFNoise0, LFNoise1, LFNoise2
Random values between -1 and +1 generated at a specified rate. Compare the three:
{LFNoise0.ar(5000)}.plot {LFNoise1.ar(5000)}.plot {LFNoise2.ar(5000)}.plot {LFNoise0.kr(1).poll(label: "value")}.scope // print the output in the post window with poll // freq - approximate rate at which to generate random values. // LFNoise0.ar(freq, mul, add) // LFNoise0.kr(freq, mul, add) // One way of hearing the difference - try replacing LFNoise0 by LFNoise1 and LFNoise2: {SinOsc.ar(800, mul: LFNoise0.kr(7))}.scope
Dust
Generates random impulses from 0 to +1.
{Dust.ar(5000)}.plot; // Dust.ar(density, mul, add) // density: average number of impulses per second
TRand
Generates a random float value in uniform distribution from lo to hi each time the trig signal changes from nonpositive to positive values:
( {var trig = Dust.kr(10); SinOsc.ar(TRand.kr(300, 3000, trig)) * 0.1 }.play; )
Mouse input
MouseX, MouseY
( { var freq = MouseX.kr(220, 440), amp = MouseY.kr(0, 0.3); SinOsc.ar(freq, mul: amp) }.play )
Scale and Offset (mul, add)
SinOsc.kr.signalRange // is the UGen bipolar (outputs between -1 and +1) or unipolar (outputs between 0 and +1)? {SinOsc.kr(1, mul: 200, add: 1000).poll(label: "output")}.play // outputs numbers between 800-1200 {SinOsc.kr(1).range(800, 1200).poll(label: "output")}.play // same result as above LFPulse.kr.signalRange // this one is unipolar {LFPulse.kr(1, mul: 400, add: 800).poll(label: "output")}.play // outputs 800-1200 {LFPulse.kr(1).range(800, 1200).poll(label: "output")}.play // same result as above
Looping
While
( i = 0; while ( { i < 5 }, { i = i + 1; "boing".postln }); )
For
for (3, 7, { arg i; i.postln }); // prints values 3 through 7
ForBy
forBy (0, 8, 2, { arg i; i.postln }); // prints values 0 through 8 by 2's
Do
do(9, {"Wow".postln}); // print "Wow" nine times 9.do({"Wow".postln}); // same as above 5.do({ arg item; item.postln }); // iterates from zero to four do(5, {arg item; item.postln}); // same as above
Compare the output of these:
do(9, {arg whatevername; whatevername.postln}); // give whatever name you want to the arg of 'do' do([9, 8, 3, 5], {arg whatevername; whatevername.postln}); // elements from collection (not a counter) do([9, 8, 3, 5], {arg whatevs1, whatevs2; [whatevs2, whatevs1].postln}); // second argument works as a counter
More examples:
["zero", "first", "second", "third", 500].do({ arg item, i; [i, item].postln; }); do(["zero", "first", "second", "third", 500], {arg item, i; [i, item].postln}); "you".do({ arg item; item.postln }); // a String is a collection of characters 'they'.do({ arg item; item.postln }); // a Symbol is a singular item (8..20).do({ arg item; item.postln }); // iterates from eight to twenty (8,10..20).do({ arg item; item.postln }); // iterates from eight to twenty, with stepsize two
If...Else
Syntax is if(condition, {true action}, {false action}). Examples:
if(10 == 10, {"10 is indeed equal to 10"}, {"false"}) if(condition, {true action}, {false action}); if(10 == 10, {"10 is indeed equal to 10"}, {"false"}) if((1 < 20).and(1.8.isInteger), {"very true"}, {"hmmm..."}) 10.do({arg count; [count, if(count.odd, {"odd"}, {"even"})].postln}) ( 84.do({arg count; if([0, 4, 7].includes(count%12), {count.post; " is part of a C triad.".postln}, {count.post; " is not part of a C triad".postln})}) ) 50.do({if(1.0.rand.round(0.01).post > 0.5, {" > 0.5".postln}, {" < 0.5".postln})}) 50.do({if(1.0.rand > 0.5, {"play a note".postln}, {"rest".postln})}) 50.do({if(0.5.coin, {"play a note".postln}, {"rest".postln})}) // same as above if((10.odd).or(10 < 20), {"true".postln}, {"false".postln})
Arrays
Various array operations:
a = [10, 11, 12, 13, 14, 15, 16, 17] a.reverse // reverse a.scramble // scramble a.choose // picks one element at random a.size // returns size of array a.at(0) // retrieves item at specified position a[0] // same as above a.wrapAt(9) // retrives item at specified position, wrapping around if > a.size a ++ 999 // ++ (concatenate) adds something to the end of the array a ++ \hi // a Symbol is a single character a ++ 'hi' // same as above a ++ "hi" // a String is a collection of characters a.insert(5, "wow") // inserts "wow" at position 5, pushes other items forward a // evaluate this and see that none of the above operations actually changed the original array a.put(2, "oops") // put "oops" at index 2 (destructive; evaluate line above again to check) a.add(44) // adds new element at the end of the array (permanently) a.do({arg whatever, blech; [blech, whatever].postln}) // how to "do" an array b = Array.series(5, 1); // create an array with 5 sequential numbers, starting at 1) b.mirror // makes it a palindrome b.permute(3) // permute: item in position 3 goes to position 0, and vice-versa b.powerset // returns all possible combinations of the array's elements Array.fill(10, "same"); // Another way of building an array Array.fill(10, {arg counter; (counter + 1)*440});
More info: http://sc3howto.blogspot.com/2010/05/arrays.html
Order of operations
Evaluate the two lines separately. Note that, in SC, the first is NOT the same as the second.
12 + 5 * 42 - 1 // result is 713, because 12 + 5 happens before the multiplication 12 + (5 * 42) - 1 // result is 221 (the parentheses specified that the multiplication should happen first)
Sample and Hold
Using Latch:
// Sample and hold controlling frequency ( { var freq; freq = Latch.kr( LFSaw.kr(1, mul: 300, add: 1000), // ramp from 700 to 1300 every 5 seconds Impulse.kr(6)); // samples the ramp 6 times per second; try using 6.1 and hear the difference SinOsc.ar(freq, mul: 0.5)}.play )
Envelopes
Use Env.new to define an envelope from scratch using breakpoints. The first three arguments to Env.new are: levels, times, and curve (there are two more args, see help file). levels - an array of levels. The first level is the initial value of the envelope. times - an array of durations of segments in seconds. There should be one fewer duration than there are levels. curve - choose from 'step', 'linear', 'exponential', 'sine', 'welch' (see help file for details).
Env.new([0, 1, 0.3, 0.8, 0], [2, 3, 1, 4],'linear').test.plot; // this will play a test tone with envelope
How to "read" the two arrays above: Go from 0 to 1 in two seconds; then go from 1 to 0.3 in 3 seconds; then go from 0.3 to 0.8 in 1 second; finally go from 0.8 to 0 in 4 seconds.
If you choose 'exponential', you can't use zero in the first array, but something like 0.001 will do:
Env.new([0.001, 1, 0.3, 0.8, 0.001], [2, 3, 1, 4],'exponential').test.plot;
You can also create some standard frequently-used envelope shapes by supplying durations to the following methods:
*linen(attackTime, sustainTime, releaseTime, level, curve) Env.linen(1, 2, 3, 0.6).test.plot; Env.linen(0.1, 0.2, 0.1, 0.6).test.plot; Env.linen(1, 2, 3, 0.6, 'sine').test.plot; Env.linen(1, 2, 3, 0.6, 'welch').test.plot; *triangle(duration, level) Env.triangle(1, 1).test.plot; *sine(duration, level) // hanning Env.sine(1,1).test.plot; *perc(attackTime, releaseTime, peakLevel, curve) Env.perc(0.05, 1, 1, 0).test.plot; // linear Env.perc(0.05, 1, 1, -4).test.plot; // exponential Env.perc(0.001, 1, 1, -4).test.plot; // sharper attack Env.perc(0.001, 1, 1, -8).test.plot; // change curvature Env.perc(1, 0.01, 1, 4).test.plot; // reverse envelope
Amplitude Modulation
Frequency Modulation
Additive Synthesis
Using Mix and Array:
// Most basic example: {SinOsc.ar(440,0,0.5) + SinOsc.ar(880,0,0.3) + SinOsc.ar(1320,0,0.1)}.play // A4 + 2 harmonics {SinOsc.ar(440,0,0.5) + SinOsc.ar(870,0,0.3) + SinOsc.ar(1330,0,0.1)}.play // A4 + 2 slightly detuned harmonics // Next: six sine waves in harmonic relationship, using "Mix". Still not that flexible... ( { var fund = 220; Mix.ar( [ SinOsc.ar(fund*1), SinOsc.ar(fund*2), SinOsc.ar(fund*3), SinOsc.ar(fund*4), SinOsc.ar(fund*5), SinOsc.ar(fund*6) ] ) * 0.1 // scale amplitude down to avoid clipping }.play ) // A more sophisticated example using an Array and controlling individual amplitudes: ( {Mix.ar( Array.fill(20, {arg count; var harm; harm = (count + 1) * 110; SinOsc.ar(harm)*1/(count+1) // higher harmonics will be softer }))*0.5 // global amplitude scaling }.play ) // The array above is doing something like this: Array.fill(20, {arg cnt; cnt + 1 * 110}); // harmonics built on 110 // ... except that we fill it with SinOsc's, not just numbers. // // Last two examples adapted from SC Book, p. 36-37.
[add short examples like bell, trumpet, clarinet, plucked string, etc]