Difference between revisions of "FaustWorkshop2014-CostaRica"

From CCRMA Wiki
Jump to: navigation, search
(Day 3)
(Day 3)
Line 344: Line 344:
 
process = _ : parametric_eq_demo: _;
 
process = _ : parametric_eq_demo: _;
 
</pre>
 
</pre>
 +
 +
=== Readings ===
 +
 +
Look at 1,2 and 3 in the online books section of https://ccrma.stanford.edu/~jos/.

Revision as of 15:54, 1 October 2014

For any question/comment, please contact Romain Michon (rmichon_at_ccrma_dot_stanford_dot_edu).

Day 1

Simple Gain Controller

import("filter.lib");

process = *(hslider("gain",0.5,0,1,0.01)) : smooth(0.999);

Simple Sine Oscillator Synthesizer

import("music.lib");
import("filter.lib");

g = hslider("myParameter",0,0,1,0.01);
freq = hslider("frequency",440,50,1000,0.1);

myOsc(frequency,gain) = osc(frequency)*(smoothGain) 
with{
        // the smooth(0.999) function interpolates the different values of gain so that it doesn't click
	smoothGain = gain : smooth(0.999);
};

process = myOsc(freq,g) ;

Working with Signals

process = _ <: _,_,_,_ :> _;

is the same as:

process = _ <: _+_+_+_;

Simple Panner

import("filter.lib");

// the metadata "[style:knob]" turns the horizontal slider into a knob
pan = hslider("pan [style:knob]",0.5,0,1,0.01) : smooth(0.999);

process = _ <: *(pan),*(1-pan);

Additive Synthesizer

import("music.lib");
import("effect.lib");

gain = hslider("gain",0,0,1,0.01) : smooth(0.999);
freq = hslider("freq",440,50,1000,0.1) : smooth(0.999);
// the smooth function can be used as a simple envelope generator for gate
gate = button("gate") : smooth(0.999);

process = osc(freq),osc(freq*2),osc(freq*3) :> *(gain)*gate <: _,_;

The last line of the code can be replaced by:

process = par(i,3,osc(freq*(i+1))) :> *(gain)*gate <: _,_;

or

process = sum(i,3,osc(freq*(i+1))) : *(gain)*gate <: _,_;

Wave Shape Synthesis

saw1(freq) // Sawtooth wave 
lf_imptrain(freq) // Impulse train
lf_squarewave(freq) // Square wave

Day 2

Tremolo and Ring Modulation

https://ccrma.stanford.edu/~jos/rbeats/Sinusoidal_Amplitude_Modulation_AM.html

import("filter.lib");

freq = hslider("freq",2,1,500,0.01);
gain = hslider("gain",1,0,1,0.01) : smooth(0.999);
depth = hslider("depth",0,0,1,0.01) : smooth(0.999);

ringMod = *(1-(depth*osc(freq)/2 + 0.5));

process = ringMod*gain <: _,_;

Stereo Ring Modulator

import("filter.lib");

freq = hslider("freq",2,1,500,0.01);
gain = hslider("gain",1,0,1,0.01) : smooth(0.999);
depth = hslider("depth",0,0,1,0.01) : smooth(0.999);

pan = 1-(depth*osc(freq)/2 + 0.5);
stereoRingMod = _ <: *(pan),*(1-pan); 

process = stereoRingMod : *(gain), *(gain);

Delay

One sample delay:

_';

N samples delay:

_@N;

Fractional delay:

fdelay1(MaxDelayLength, delayLength)

The Simplest Lowpass/Highpass Filter

https://ccrma.stanford.edu/~jos/filters/One_Zero.html

import("filter.lib");
import("music.lib");

b1 = hslider("feedforward",0,-1,1,0.01) : smooth(0.999);
filter = _ <: _+(_' : *(b1)) : *(0.5); 
process = noise : filter;

Feedforward Comb Filter

https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html

import("filter.lib");
import("music.lib");

b = hslider("feedforward",0,-1,1,0.01) : smooth(0.999);
del = hslider("del",1,1,100,1);
filter = _ <: _+(_@del : *(b)) : *(0.5);
process = noise : filter;

Flanger

https://ccrma.stanford.edu/~jos/pasp/Flanging.html

Workshop Version
import("music.lib");
import("filter.lib");

flangeDelay = hslider("flangeDelay",0.05,0.001,1,0.001)*SR*0.001;
depth = hslider("depth",0.5,-1,1,0.01) : smooth(0.999);
speed = hslider("speed",0.5,0.1,20,0.01);
gain = hslider("gain",0.8,0,1,0.01) : smooth(0.999);

myFlanger = _ <: _,fdelay1(1024,delayLength)*depth : + : *(0.5)
with{
	delayLength = flangeDelay*(1 + osc(speed))/2;
};

process = myFlanger*gain;

Day 3

Echo

import("music.lib");
import("filter.lib");
delayDuration = hslider("duration",1,0.01,1,0.01); // in seconds
feedback = hslider("feedback",0,0,0.99,0.01) : smooth(0.999);
delayLength = SR*delayDuration;
process = (+ : fdelay(SR,delayLength)) ~ *(feedback);

Feedback Comb Filter

https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html

import("music.lib");
import("filter.lib");
delayLength = hslider("delayLength",1,0,1000,1); // in samples
feedback = hslider("feedback",0,0,0.99,0.01) : smooth(0.999);
process = (+ : fdelay(1024,delayLength)) ~ *(-feedback);

Karplus Strong

A simple string physical model. An average filter is used to attenuate high frequencies faster than low frequencies.

https://ccrma.stanford.edu/~jos/pasp/Karplus_Strong_Algorithm.html

import("filter.lib");
import("music.lib");

freq = hslider("freq",440,50,1000,0.1);
feedback = hslider("feedback",0,0,0.999,0.001);

string = + ~ (fdelay(1024,delayLength) : *(feedback) : filter)
with{
	delayLength = SR/freq;
	filter = _ <: (_+_')/2;
};

impulse = button("gate") <: _,_' : - : >(0);

process = impulse : string;

Resonant Bandpass Filter

import("filter.lib");

ctFreq = hslider("ctFreq",400,50,2000,0.01) : smooth(0.999);
BW = hslider("Bandwidth",100,1,1000,1) : smooth(0.999);
Q = ctFreq/BW;

process = noise : resonbp(ctFreq,Q,1);

Parametric Equalizer

Workshop Version
import("filter.lib");
import("effect.lib");

bandsNumber = 10;
highestBand = 15000;

oneBand(cnt) = vgroup("Band %cnt",peak_eq(Lfx,fx,B)) 
with{
	Lfx = vslider("Level",0,-60,10,0.1);
	fx = nentry("Freq",highestBand*(cnt+1)/bandsNumber,40,highestBand,0.1);
	B = hslider("Bdwth [style: knob]",100,1,5000,0.1);
};

bp = checkbox("Bypass");

process = hgroup("Parametric Equalizer",bypass1(bp,seq(i,bandsNumber,oneBand(i))));
filter.lib Version
import("filter.lib");

process = _ : parametric_eq_demo: _;

Readings

Look at 1,2 and 3 in the online books section of https://ccrma.stanford.edu/~jos/.