Difference between revisions of "SuperCollider Quick Reference"

From CCRMA Wiki
Jump to: navigation, search
(Additive Synthesis)
(Additive Synthesis)
Line 343: Line 343:
 
Array.fill(20, {arg cnt; cnt + 1 * 110}); // harmonics built on 110
 
Array.fill(20, {arg cnt; cnt + 1 * 110}); // harmonics built on 110
  
// ... except that we fill it with SinOsc's, not just numbers
+
// ... except that we fill it with SinOsc's, not just numbers.
 +
// Some of these examples adapted from SC Book, p. 36-37.
 +
 
 
</pre>
 
</pre>
  
 
==Subtractive Synthesis==
 
==Subtractive Synthesis==

Revision as of 18:49, 12 June 2011

SuperCollider Quick Reference

This page collects short and simple code examples of useful stuff. These are just quick "reminders" of how to do common things. Good page for beginners.

Quick system test

Start things up and play/see a sine wave:

Server.default = s = Server.local.boot; // start local server

g = SwingOSC.default.boot; // on Linux (gedit, emacs)

{SinOsc.ar(freq: 400, mul: 0.5)}.scope  // you should hear a sine wave and see the waveform

Play a sound file, vary speed, reverse

create a buffer

~pizza = Buffer.read(s, "path/to/sound/file.wav");

simple play

{PlayBuf.ar(1, ~pizza)}.play; // number of channels and buffer

get sound file info

[~pizza.bufnum, ~pizza.numChannels, ~pizza.path, ~pizza.numFrames];

varying playback speed

{PlayBuf.ar(1, ~pizza, 2, loop: 1)}.play; // play 2x faster

{PlayBuf.ar(1, ~pizza, 0.5, loop: 1)}.play; // play at half the speed

{PlayBuf.ar(1, ~pizza, Line.kr(0.5, 2, 10), loop: 1)}.play; // playback speed goes from 0.5 to 2 in 10 seconds

changing direction (reverse)

{PlayBuf.ar(1, ~pizza, -1, loop: 1)}.play; // reverse sound

{PlayBuf.ar(1, ~pizza, -0.5, loop: 1)}.play; // play at half the speed AND reversed

Play a MIDI file

Do this and that.

poll and scope

Check what's going on with your UGens:

{LFNoise0.kr(5).round(0.01).poll(label: "watchThis")}.scope

// by default, poll is triggered 10 times per second, but you can change it:

{LFNoise0.kr(5).round(0.01).poll(trig: 1, label: "watchThis")}.scope  // triggers poll once every second

From SC's reference:

WARNING: Printing values from the Server in intensive for the CPU. Poll should be used for debugging purposes.

Random numbers

rrand

rrand(0, 5)   // generates a random number between 0 and 5 (inclusive)

rand

rand(10)  // generates a random integer number between 0 and 10 (10 not included)

rand(10.0) // generates a random decimal number between 0.0 and 10.0 (10.0 not included)

10.0.rand  // same as above

10.0.rand.round(0.01) // same as above with rounding

exprand(1, 10.0)  // generates a random decimal number between 0.0 and 10.0, mostly lower values

Note the difference between these two:

dup(rand(100), 5)   // picks a number, duplicates it

dup({rand(100)}, 5) // duplicates the function of picking a number

LFNoise0, LFNoise1, LFNoise2

Random values between -1 and +1 generated at a specified rate. Compare the three:

{LFNoise0.ar(5000)}.plot
{LFNoise1.ar(5000)}.plot
{LFNoise2.ar(5000)}.plot

{LFNoise0.kr(1).poll(label: "value")}.scope  // print the output in the post window with poll

// freq - approximate rate at which to generate random values.
// LFNoise0.ar(freq, mul, add)
// LFNoise0.kr(freq, mul, add)

// One way of hearing the difference - try replacing LFNoise0 by LFNoise1 and LFNoise2:

{SinOsc.ar(800, mul: LFNoise0.kr(7))}.scope

Dust

Generates random impulses from 0 to +1.

{Dust.ar(5000)}.plot;

// Dust.ar(density, mul, add)
// density: average number of impulses per second

TRand

Generates a random float value in uniform distribution from lo to hi each time the trig signal changes from nonpositive to positive values:

(
 {var trig = Dust.kr(10);
  SinOsc.ar(TRand.kr(300, 3000, trig)) * 0.1
 }.play;
)

Mouse input

MouseX, MouseY

(
 {
  var freq = MouseX.kr(220, 440), amp = MouseY.kr(0, 0.3);
  SinOsc.ar(freq, mul: amp)
 }.play
)

Scale and Offset (mul, add)

SinOsc.kr.signalRange  // is the UGen bipolar (outputs between -1 and +1) or unipolar (outputs between 0 and +1)?

{SinOsc.kr(1, mul: 200, add: 1000).poll(label: "output")}.play // outputs numbers between 800-1200

{SinOsc.kr(1).range(800, 1200).poll(label: "output")}.play     // same result as above

LFPulse.kr.signalRange  // this one is unipolar

{LFPulse.kr(1, mul: 400, add: 800).poll(label: "output")}.play  // outputs 800-1200

{LFPulse.kr(1).range(800, 1200).poll(label: "output")}.play     // same result as above

Looping

While

(
i = 0;
while ( { i < 5 }, { i = i + 1; "boing".postln });
)

For

for (3, 7, { arg i; i.postln }); // prints values 3 through 7

ForBy

forBy (0, 8, 2, { arg i; i.postln }); // prints values 0 through 8 by 2's

Do

do(9, {"Wow".postln}); // print "Wow" nine times

9.do({"Wow".postln}); // same as above

5.do({ arg item; item.postln }); // iterates from zero to four

do(5, {arg item; item.postln}); // same as above

Compare the output of these:

do(9, {arg whatevername; whatevername.postln}); // give whatever name you want to the arg of 'do'

do([9, 8, 3, 5], {arg whatevername; whatevername.postln}); // elements from collection (not a counter)

do([9, 8, 3, 5], {arg whatevs1, whatevs2; [whatevs2, whatevs1].postln}); // second argument works as a counter

More examples:

["zero", "first", "second", "third", 500].do({ arg item, i; [i, item].postln; });

do(["zero", "first", "second", "third", 500], {arg item, i; [i, item].postln});

"you".do({ arg item; item.postln }); // a String is a collection of characters

'they'.do({ arg item; item.postln }); // a Symbol is a singular item

(8..20).do({ arg item; item.postln }); // iterates from eight to twenty 

(8,10..20).do({ arg item; item.postln }); // iterates from eight to twenty, with stepsize two

If...Else

Syntax is if(condition, {true action}, {false action}). Examples:

if(10 == 10, {"10 is indeed equal to 10"}, {"false"})

if(condition, {true action}, {false action});

if(10 == 10, {"10 is indeed equal to 10"}, {"false"})

if((1 < 20).and(1.8.isInteger), {"very true"}, {"hmmm..."})

10.do({arg count; [count, if(count.odd, {"odd"}, {"even"})].postln})

(
84.do({arg count; if([0, 4, 7].includes(count%12), 
	{count.post; " is part of a C triad.".postln}, 
	{count.post; " is not part of a C triad".postln})})
)

50.do({if(1.0.rand.round(0.01).post > 0.5,  {" > 0.5".postln}, {" < 0.5".postln})})

50.do({if(1.0.rand > 0.5,  {"play a note".postln}, {"rest".postln})})

50.do({if(0.5.coin, {"play a note".postln}, {"rest".postln})}) // same as above

if((10.odd).or(10 < 20), {"true".postln}, {"false".postln})

Arrays

Various array operations:

a = [10, 11, 12, 13, 14, 15, 16, 17]

a.reverse  // reverse

a.scramble // scramble

a.choose  // picks one element at random

a.size	  // returns size of array

a.at(0)   // retrieves item at specified position

a[0]	  // same as above

a.wrapAt(9) // retrives item at specified position, wrapping around if > a.size

a ++ 999  // ++ (concatenate) adds something to the end of the array

a ++ \hi  // a Symbol is a single character

a ++ 'hi' // same as above

a ++ "hi" // a String is a collection of characters

a.insert(5, "wow") // inserts "wow" at position 5, pushes other items forward

a // evaluate this and see that none of the above operations actually changed the original array

a.put(2, "oops") // put "oops" at index 2 (destructive; evaluate line above again to check)

a.add(44)    // adds new element at the end of the array (permanently) 

a.do({arg whatever, blech; [blech, whatever].postln}) 	// how to "do" an array

b = Array.series(5, 1); // create an array with 5 sequential numbers, starting at 1)

b.mirror  // makes it a palindrome

b.permute(3) // permute: item in position 3 goes to position 0, and vice-versa 

b.powerset // returns all possible combinations of the array's elements

Array.fill(10, "same"); // Another way of building an array

Array.fill(10, {arg counter; (counter + 1)*440}); 

More info: http://sc3howto.blogspot.com/2010/05/arrays.html

Order of operations

Evaluate the two lines separately. Note that, in SC, the first is NOT the same as the second.

12 + 5 * 42 - 1   // result is 713, because 12 + 5 happens before the multiplication
12 + (5 * 42) - 1 // result is 221 (the parentheses specified that the multiplication should happen first)

Sample and Hold

Using Latch:

// Sample and hold controlling frequency
(
{
var freq;
freq = Latch.kr(
	LFSaw.kr(1, mul: 300, add: 1000),  // ramp from 700 to 1300 every 5 seconds
	Impulse.kr(6)); // samples the ramp 6 times per second; try using 6.1 and hear the difference
SinOsc.ar(freq, mul: 0.5)}.play
)

Amplitude Modulation

Frequency Modulation

Additive Synthesis

// Most basic example:

{SinOsc.ar(440,0,0.5) + SinOsc.ar(880,0,0.3) + SinOsc.ar(1320,0,0.1)}.play // A4 + 2 harmonics

{SinOsc.ar(440,0,0.5) + SinOsc.ar(870,0,0.3) + SinOsc.ar(1330,0,0.1)}.play // A4 + 2 slightly detuned harmonics

// Next: six sine waves in harmonic relationship, using "Mix". Still not that flexible...

(
{
 var fund = 220;
 Mix.ar(
		[
		SinOsc.ar(fund*1),
		SinOsc.ar(fund*2),
		SinOsc.ar(fund*3),	
		SinOsc.ar(fund*4),
		SinOsc.ar(fund*5),
		SinOsc.ar(fund*6)
		]
        ) * 0.1  // scale amplitude down to avoid clipping
}.play
)

// A more sophisticated example using an Array and controlling individual amplitudes:

(
{Mix.ar(
	Array.fill(20,
		{arg count;
		 var harm;
		 harm = (count + 1) * 110;
			SinOsc.ar(harm)*1/(count+1) // higher harmonics will be softer
		}))*0.5 // global amplitude scaling
}.play
)

// The array above is doing something like this: 

Array.fill(20, {arg cnt; cnt + 1 * 110}); // harmonics built on 110

// ... except that we fill it with SinOsc's, not just numbers.
// Some of these examples adapted from SC Book, p. 36-37.

Subtractive Synthesis