SLOrk/Instruments/Intervalis
Appearance
Description
This instrument play intervals. The tilting of the laptop controls the intensity of each note (tilting front or back play the root note and tilting to the sides play the "interval" note). The sound is played trough a LeSLOrklie speaker (it rotates around the Hemi at an adjustable spin frequency).
Usage
Installation
- Copy the file intervalis.ck to any folder you like
- Done!
Running
- Using a terminal go to the folder were "intervalis.ck" is located
- On the terminal window type: (replace N with the number of output channels of the audio card)
chuck -cN intervalis
- Play!
Execution
- Select the root note by using 2nd and 3rd rows of the keyboard (from Tab & CAPS to ] & RETURN). See root note selection for details
- Select interval using the numbers (1 to 8)
- Play notes by tilting the laptop
- Optional:
Key mapping
Root note selection
| F4# | G4 | G4# | A4 | A4# | B4 | C5 | C5# | D5 | D5# | E5 | F5 | F5# | G5 | G5# | A5 | A5# | B5 | C6 | C6# | D6 | D6# | E6 |
| TAB | CAPS | Q | A | W | S | D | R | F | T | G | H | U | J | I | K | O | L | ; | [ | ' | ] |
Interval selection
Number keys from 1 to 8
Interval quality selection
- M (Major/Perfect)
- N (Minor/Tritone)
(no diminished or augmented)
Other control keys
| Parameter | Decrease | Increase |
|---|---|---|
| Register | , | . |
| Detune | 9 | 0 |
| Spin frequency | Arrow Left | Arrow Right |
| Number of harmonics (timber) | Arrow Down | Arrow Up |
Mute keys
| Key | Mutes ... |
|---|---|
| SPACE BAR | Both notes |
| Left SHIFT | Root note |
| Right SHIFT | Interval note |
Advanced users
ChucK Code
If you just want to look at the code, here it is:
// filename: intervalis.ck
// INTERVALIS - Play intervals
//
// MUSIC 128 - HW1
// By: Jorge Herrera
//
/************************************
* MAIN CONTROL PARAMETERS
*************************************/
10 => int _init_harmonics; // Control over the intial timbre
1 => float _init_spin_freq; // LeSLOrklie initial speed [Hz]
2 => int numChan; // LeSLOrklie is implemented over this many channels
440 => float _a440; // frequency associated to the A key
0 => int _init_quality; // Initial quality of the interval (0 -> Major, 1 -> minor)
5 => int _init_interval; // Initial interval
0.15 => float _tilt_threshold; // [0 - 1): threshold for silence (mute) level
/************************************
* THE CODE
*************************************/
// safety checks
if(_tilt_threshold >= 1) 0.999 => _tilt_threshold;
// The synthesis
Blit tonic => PitShift choir => JCRev rev => PoleZero mainOut;
Blit interval => choir;
mainOut.blockZero(0.99);
// Synth. initialization
_a440 => tonic.freq;
_init_harmonics => tonic.harmonics => interval.harmonics;
0 => tonic.gain => interval.gain;
0.12 => rev.mix;
1.0 => choir.shift;
0.2 => choir.mix;
// Interval definition array:
int intervals[2][8];
// Major&Perfect intervals (defined in semitones)
0 => intervals[0][0];
2 => intervals[0][1];
4 => intervals[0][2];
5 => intervals[0][3];
7 => intervals[0][4];
9 => intervals[0][5];
11 => intervals[0][6];
12 => intervals[0][7];
// Minor&Tritone intervals (defined in semitones)
0 => intervals[1][0];
1 => intervals[1][1];
3 => intervals[1][2];
5 => intervals[1][3];
6 => intervals[1][4]; /* m5 == tritone */
8 => intervals[1][5];
10 => intervals[1][6];
12 => intervals[1][7];
// Interval initialization
0 => float tonicTarget;
_init_quality => int gQuality; /* 0 = major, 1 = minor */
_init_interval - 1 => int gInterval => float intervalTarget;
updateInterval(gQuality, gInterval);
// Flags to determine if the sounds are muted
0 => int tonicMuted => int intervalMuted;
/**********************
* FUNCTIONS
*
* HANDLE WITH CARE!!!
***********************
/**************************
* The "LeSLOrklie"
**************************/
_init_spin_freq => float spinFreq;
Gain outGains[numChan];
fun void spin() {
for(0 => int i; i<numChan; i++)
{
mainOut => outGains[i] => dac.chan(i);
}
0 => float angle;
0.001 => float step; // must be in seconds
while(step::second => now)
{
2.0*Math.PI*spinFreq*step +=> angle;
for(0 => int i; i<numChan; i++) {
(Math.sin(angle + (2*Math.PI*i)$float/numChan) +
1.0)/2.0 => outGains[i].gain;
}
}
}
/**************************
* GET MOTION INPUT
**************************/
// infinite while loop
fun void getMotion()
{
// instantiate a HidIn object
Hid accel;
HidMsg movementMsg;
// open tilt sensor
if( !accel.openTiltSensor() ) {
<<< "", "tilt sensor unavailable", "" >>>;
me.exit();
}
// print
<<< "", "tilt sensor ready", "" >>>;
while( true )
{
// poll the tilt sensor, expect to get back 3 element array of
// (9 for now means accelerometer, 0 selects 0th accelerometer)
accel.read( 9, 0, movementMsg );
if( !tonicMuted ) {
//<<< movementMsg.x, movementMsg.y, movementMsg.z >>>;
if(Math.fabs(movementMsg.y$float/300.0) < _tilt_threshold) 0 => tonicTarget;
else (Math.fabs(movementMsg.y$float/300.0) - _tilt_threshold)/(1 - _tilt_threshold) => tonicTarget;
}
if( !intervalMuted ) {
if(Math.fabs(movementMsg.x$float/300.0) < _tilt_threshold) 0 => intervalTarget;
else (Math.fabs(movementMsg.x$float/300.0) - _tilt_threshold)/(1 - _tilt_threshold) => intervalTarget;
}
// advance time
50::ms => now;
}
}
// Smooth gain changes
fun void rampGains()
{
.5 => float slew;
while(20::ms => now) {
(tonicTarget - tonic.gain())*slew + tonic.gain() => tonic.gain;
(intervalTarget - interval.gain())*slew + interval.gain() =>
interval.gain;
}
}
/**************************
* GET KEYBOARD INPUT
**************************/
// infinite event loop
fun void getKeys()
{
Hid hiKbd;
HidMsg msgKbd;
// which keyboard
0 => int device;
// get from command line
if( me.args() ) me.arg(0) => Std.atoi => device;
// open keyboard (get device number from command line)
if( !hiKbd.openKeyboard( device ) ) me.exit();
<<< "", "keyboard '" + hiKbd.name() + "' ready", "" >>>;
0 => int gRegister;
while( true )
{
// wait on event
hiKbd => now;
// get one or more messages
while( hiKbd.recv( msgKbd ) )
{
// check for action type
if( msgKbd.isButtonDown() )
{
//<<< "", "down:", msgKbd.which, "(code)", msgKbd.key, "(usb key)", msgKbd.ascii, "(ascii)" >>>;
//<<< "", "down:", msgKbd.which >>>;
// Effect keys
// Spin frequency control
if(msgKbd.which == 79) {
0.2 +=> spinFreq;
}
if(msgKbd.which == 80 && spinFreq > 0.0000000001) {
0.2 -=> spinFreq;
}
// Harmonics control
if(msgKbd.which == 81 && tonic.harmonics() > 0) {
tonic.harmonics() - 1 => tonic.harmonics;
interval.harmonics() - 1 => interval.harmonics;
if(tonic.harmonics() < 5) {
<<< "***** ", tonic.harmonics(), " harmonics *****" >>>;
}
}
if(msgKbd.which == 82) {
tonic.harmonics() + 1 => tonic.harmonics;
interval.harmonics() + 1 => interval.harmonics;
if(tonic.harmonics() < 5) {
<<< "***** ", tonic.harmonics(), " harmonics *****" >>>;
}
}
// PitShift
if(msgKbd.which == 38 && choir.shift() > 0.8) {
choir.shift() - 0.01 => choir.shift;
if(choir.shift() == 1.0)
<<< "***** IN TUNE *****" >>>;
}
if(msgKbd.which == 39 && choir.shift() < 1.2) {
choir.shift() + 0.01 => choir.shift;
if(choir.shift() == 1.0)
<<< "***** IN TUNE *****" >>>;
}
// Interval selection
if(msgKbd.which >= 30 && msgKbd.which <= 37) {
msgKbd.which - 30 => gInterval;
}
// Octave change
// ","
if(msgKbd.which == 54) {
2 /=> _a440;
tonic.freq()/2 => tonic.freq;
gRegister - 1 => gRegister;
<<< "Register: ", gRegister >>>;
}
// "."
if(msgKbd.which == 55) {
2 *=> _a440;
tonic.freq()*2 => tonic.freq;
gRegister + 1 => gRegister;
<<< "Register: ", gRegister >>>;
}
// Base pitch selection
if(msgKbd.which == 43) { // tab = F#
_a440*Math.pow(2,-3/12.0) => tonic.freq;
}
if(msgKbd.which == 57) { // CAPS = G
_a440*Math.pow(2,-2/12.0) => tonic.freq;
}
if(msgKbd.which == 20) { // Q = G#
_a440*Math.pow(2,-1/12.0) => tonic.freq;
}
if(msgKbd.which == 4) {
_a440*Math.pow(2,0/12.0) => tonic.freq;
}
if(msgKbd.which == 26) {
_a440*Math.pow(2,1/12.0) => tonic.freq;
}
if(msgKbd.which == 22) {
_a440*Math.pow(2,2/12.0) => tonic.freq;
}
if(msgKbd.which == 7) {
_a440*Math.pow(2,3/12.0) => tonic.freq;
}
if(msgKbd.which == 21) {
_a440*Math.pow(2,4/12.0) => tonic.freq;
}
if(msgKbd.which == 9) {
_a440*Math.pow(2,5/12.0) => tonic.freq;
}
if(msgKbd.which == 23) {
_a440*Math.pow(2,6/12.0) => tonic.freq;
}
if(msgKbd.which == 10) {
_a440*Math.pow(2,7/12.0) => tonic.freq;
}
if(msgKbd.which == 11) {
_a440*Math.pow(2,8/12.0) => tonic.freq;
}
if(msgKbd.which == 24) {
_a440*Math.pow(2,9/12.0) => tonic.freq;
}
if(msgKbd.which == 13) {
_a440*Math.pow(2,10/12.0) => tonic.freq;
}
if(msgKbd.which == 12) {
_a440*Math.pow(2,11/12.0) => tonic.freq;
}
if(msgKbd.which == 14) {
_a440*Math.pow(2,12/12.0) => tonic.freq;
}
if(msgKbd.which == 18) {
_a440*Math.pow(2,13/12.0) => tonic.freq;
}
if(msgKbd.which == 15) {
_a440*Math.pow(2,14/12.0) => tonic.freq;
}
if(msgKbd.which == 51) {
_a440*Math.pow(2,15/12.0) => tonic.freq;
}
if(msgKbd.which == 47) { // "[" = C#
_a440*Math.pow(2,16/12.0) => tonic.freq;
}
if(msgKbd.which == 52) { // "'" = D
_a440*Math.pow(2,17/12.0) => tonic.freq;
}
if(msgKbd.which == 48) { // "]" = D#
_a440*Math.pow(2,18/12.0) => tonic.freq;
}
if(msgKbd.which == 40) { // RETURN = E
_a440*Math.pow(2,19/12.0) => tonic.freq;
}
// Major(perfect) || minor(tritone) gQuality selection
if(msgKbd.which == 16) {
0 => gQuality;
<<< "", "Major mode" >>>;
}
if(msgKbd.which == 17) {
1 => gQuality;
<<< "", "Minor mode" >>>;
}
updateInterval(gQuality, gInterval);
// Mute controls
// Space bar mute both sounds
if(msgKbd.which == 44) {
1 => tonicMuted => intervalMuted;
0 => tonicTarget => intervalTarget;
}
// Left shift mute root (tonic) note
if(msgKbd.which == 225) {
1 => tonicMuted;
0 => tonicTarget;
}
// Right shift mute the interval note
if(msgKbd.which == 229) {
1 => intervalMuted;
0 => intervalTarget;
}
}
// check for action type
if( msgKbd.isButtonUp() )
{
// Mute controls
// Space bar mute both sounds
if(msgKbd.which == 44) {
0 => tonicMuted => intervalMuted;
}
// Left shift mute root (tonic) note
if(msgKbd.which == 225) {
0 => tonicMuted;
}
// Right shift mute the interval note
if(msgKbd.which == 229) {
0 => intervalMuted;
}
}
}
}
}
fun void updateInterval(int m, int i)
{
Math.pow(2,intervals[m][i]/12.0)*tonic.freq() => interval.freq;
}
/**************************
* GET OSC MESSAGES
**************************/
// infinite event loop
fun void receiveOSC()
{
// create our OSC receiver
OscRecv recv;
// use port 6449 (or whatever)
6449 => recv.port;
// start listening (launch thread)
recv.listen();
// create an address in the receiver, store in new variable
recv.event( "/message, s i s s" ) @=> OscEvent @ oe;
while( true )
{
// wait for event to arrive
oe => now;
// grab the next message from the queue.
while( oe.nextMsg() )
{
string _base;
int _interval;
string _quality;
string _tilt;
// getFloat fetches the expected float (as indicated by "i f")
oe.getString() => _base;
oe.getInt() => _interval;
oe.getString() => _quality;
oe.getString() => _tilt;
// print
<<< "", "" >>>;
<<< "*********** NEW MESSAGE RECEIVED ************", "" >>>;
<<< "Root key", _base >>>;
<<< "Interval", _interval >>>;
<<< "Quality", _quality >>>;
<<< "Tilt", _interval >>>;
}
}
}
fun void printInstructions()
{
<<< "", "" >>>;
<<< "", "" >>>;
<<< "", "This instrument play intervals, where the gain relationship" >>>;
<<< "", "between the 2 playing pitches is controlled by the performer" >>>;
<<< "", "using the tilt sensor." >>>;
<<< "", "" >>>;
<<< "", "There is separate control over the pitch, using the keyboard." >>>;
<<< "", "" >>>;
<<< "", "- Use keys [ A - L ] as a piano keyboard starting at A (pitch) = A (key)" >>>;
<<< "", "- Use numbers to set the interval (1: Prime, 2: Second, ..., 8: Octave)" >>>;
<<< "", "- Use keys M (major/perfect) & N (minor/tritone) to control the quality of the interval" >>>;
<<< "", "- Use UP/DOWN arrow keys to change the number of harmonics of the sound" >>>;
<<< "", "- Use LEFT/RIGHT arrow keys to change speed of rotation of the 'LeSLOrklie'" >>>;
<<< "", "- To change octave use ',' (down) or '.' (up)" >>>;
<<< "", "- '9' & '0' play with de-tuning" >>>;
<<< "", "- Use 'space bar' or 'shift keys' to mute the sounds" >>>;
}
// Run the threads
spork ~ getMotion(); // Get motion input
spork ~ getKeys(); // Get keyboard input
spork ~ spin(); // Make the sound spee
spork ~ rampGains(); // Make the gain ratio change smooth
spork ~ receiveOSC(); // Listen to OSC messages
printInstructions();
// The infinite loop
while(true)
{
100::ms => now;
}